1. [5 points] Write an assembly language program to add two 16 -bit numbers x and y. Use the following program as a starting point. Add your code in the ADD16 subroutine.
```
// -- DO NOT CHANGE ANYTHING UNTIL THE **** LINE--//
ORG OH
LJMP MAIN
ORG 100H
MAIN:
CALL ADD16
HERE: SJMP HERE
ORG 130H
// ******************
ADD16:
```

// ADD YOUR CODE HERE
RET
END

- The number $\mathbf{x}$ is stored at locations 70 H and 71 H , with its most significant byte (MSB) in 70 H and the least significant byte in 71 H .
- The number $\mathbf{y}$ is stored at locations 72 H (MSB) and 73H (LSB).
- Since the result $\mathbf{z}=\mathbf{x}+\mathbf{y}$ can be 17 bits long, store the result in memory locations $74 \mathrm{H}, 75 \mathrm{H}, 76 \mathrm{H}$.
- For $\mathbf{z}=z_{16} z_{15} z_{14} \ldots z_{3} z_{2} z_{1} z_{0}$ where $z_{0}$ is the least significant bit and $z_{16}$ is the most significant bit, the memory location 74 H should have $0000000 z_{16}$, the memory location 75 H should have the bits $z_{15} z_{14} \ldots z_{8}$, and the memory location 76 H should have the bits $z_{7} z_{6} \ldots z_{0}$.

2. [15 points] In a fully connected neural network, forward propagation involves the Multiply and Accumulate (MAC) operation. The neuron input is multiplied with the weight attributed to the path between that neuron and the neuron to the next layer. Then, all such products coming from different source neurons to the same destination neuron are added.
Let us consider the neuron inputs to be $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. Let the corresponding weights be $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$. The result after the MAC operation will be

$$
\mathbf{x}=\mathbf{a}_{1} \mathbf{b}_{1}+\mathbf{a}_{2} \mathbf{b}_{2}+\mathbf{a}_{3} \mathbf{b}_{3}
$$

Write an assembly language program to generate the result $\mathbf{x}$, when $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ are three 8-bit neuron inputs present in the memory locations 70 H to 72 H and $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ are 8 -bit weights present in the memory locations 73 H to 75 H .
Since the result x can be 18 bits long, store the result in memory locations 50 H , 51H, 52H. For $\mathbf{x}=x_{17} x_{16} x_{15} \ldots x_{3} x_{2} x_{1} x_{0}$, the memory location 50 H should have $000000 x_{17} x_{16}$, the memory location 51H should have the bits $x_{15} x_{14} \ldots x_{8}$, and the memory location 52 H should have the bits $x_{7} x_{6} \ldots x_{0}$.

Use the following program as a starting point. Use the ADD16 subroutine written in the previous question to implement the MAC operation.

```
// -- DO NOT CHANGE ANYTHING UNTIL THE **** LINE--//
ORG OH
LJMP MAIN
ORG 100H
MAIN:
CALL MAC
HERE: SJMP HERE
ORG 130H
// ******************
```

MAC :
// MAC OPERATION, CALL THE ADDITION SUBROUTINE USING "CALL ADD16"
RET
ADD16:
//16 BIT ADDITION CODE

RET
END

## TA Checkpoints

1. For question 1, check the following two cases:

- $\mathbf{x}=1234 \mathrm{H}, \mathrm{y}=$ DCBAH.
- $\mathbf{x}=$ FFFFH, $\mathbf{y}=$ FFFFH.

2. For question 2 , check the following three cases:

- $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}=18 \mathrm{H}, 24 \mathrm{H}, 0 \mathrm{CH}, \mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}=03 \mathrm{H}, 02 \mathrm{H}, 06 \mathrm{H}$.
- $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}=$ FFH, FFH, 01H, $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ FFFH, FFH, FFH.
- $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}=$ FFH, FFH, FFH, $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}=$ FFH, FFH, FFH.

3. For question 2, ask the student to explain the code in the MAC subroutine.
