EE 337: Microprocessors Laboratory (Spring 2023)
Indian Institute of Technology Bombay
Lab 2: 20 points

1. [5 points] Write an assembly language program to perform modular addition and subtraction under the modulus 61 H . Use the following program as a starting point. Add your codes in the MODADD and MODSUB subroutines.
```
// -- DO NOT CHANGE ANYTHING UNTIL THE **** LINE--//
ORG OH
LJMP MAIN
ORG 100H
MAIN:
MOV R1, #61H
CALL MODADD
CALL MODSUB
HERE: SJMP HERE
ORG 130H
// ******************
MODADD:
// ADD YOUR CODE HERE
RET
MODSUB:
// ADD YOUR CODE HERE
RET
END
```

- The inputs $\mathbf{x}$ and $\mathbf{y}$ must stored at locations 70 H and 71 H respectively.
- The sum and difference are defined as follows:

```
sum = (x + y) mod 61H
diff = (x - y) mod 61H
```

- The sum should be stored in 72 H and the difference should be stored in 73 H .


## TA Checkpoint 1

Check the following two cases:

- $x=34 H, y=5 A H$.

Expected Results : sum $=2 \mathrm{DH}$, diff $=3 \mathrm{BH}$

- $\mathrm{x}=4 \mathrm{DH}, \mathrm{y}=09 \mathrm{H}$.

Expected Results : sum $=56 \mathrm{H}$, diff $=44 \mathrm{H}$
2. [ 5 points] Write an assembly program to compute the determinant of any $2 \times 2$ matrix. Use the following program as a starting point. Add your codes in the DET subroutine.

```
// -- DO NOT CHANGE ANYTHING UNTIL THE **** LINE--//
ORG OH
LJMP MAIN
ORG 100H
MAIN:
CALL DET
HERE: SJMP HERE
ORG 130H
// ******************
DET:
// ADD YOUR CODE HERE
RET
END
```

- The inputs a, b, c and d must stored at locations $60 \mathrm{H}, 61 \mathrm{H}, 62 \mathrm{H}$ and 63 H respectively.
- The determinant of a $2 \times 2$ matrix is defined as follows:

```
det = (a * d) - (b * c)
```

- The determinant will be a 16 bit number. The upper byte must be stored in 70 H and the lower byte must be stored in 71 H .


## TA Checkpoint 2

Check the following two cases:

- $\mathbf{a}=56 \mathrm{H}, \mathbf{b}=12 \mathrm{H}, \mathbf{c}=3 \mathrm{AH}, \mathbf{d}=2 \mathrm{CH}$.

Expected results : upper byte $=0 \mathrm{AH}$, lower byte $=\mathrm{B} 4 \mathrm{H}$

- $\mathbf{a}=34 \mathrm{H}, \mathrm{b}=\mathrm{E} 1 \mathrm{H}, \mathbf{c}=59 \mathrm{H}, \mathrm{d}=\mathrm{D} 0 \mathrm{H}$.

Expected results : upper byte $=\mathrm{DCH}$, lower byte $=07 \mathrm{H}$
3. [10 points] Bubble Sort is the simplest array sorting algorithm that works by repeatedly swapping adjacent elements if they are in the wrong order. Write an assembly language program to implement Bubble Sort algorithm to sort a given array of 8 elements in Ascending order.

Refer to https://www.geeksforgeeks.org/bubble-sort/ to understand Bubble Sort algorithm.

```
// -- DO NOT CHANGE ANYTHING UNTIL THE **** LINE--//
ORG OH
LJMP MAIN
ORG 100H
MAIN:
CALL SORT
HERE: SJMP HERE
ORG 130H
// ******************
SORT:
// ADD YOUR CODE HERE
RET
END
```

- The unsorted (input) array of elements must be stored in memory locations 60 H to 67 H .
- The sorted elements must be stored in memory locations 70 H to 77 H .
- To reduce the effort involved in adding multiple items in memory locations, you can use the command window in Keil.
- Start a Keil debugging session.
- Enter the following command in the Keil command window to load an array of 8 numbers represented in decimal format. The I:60h refers to indirect addressing of location 60 H . To inspect the memory, you should enter I:0x60 in the Keil memory window.

$$
\text { E char I:60h = 14h,69h, } 26 \mathrm{~h}, 5 \mathrm{bh}, 7 \mathrm{fh}, 1 \mathrm{ah}, 00 \mathrm{~h}, 05 \mathrm{~h}
$$

## TA Checkpoint 3

Check the following 2 cases:

- Inputs samples $=14 \mathrm{H}, 69 \mathrm{H}, 26 \mathrm{H}, 5 \mathrm{BH}, 7 \mathrm{FH}, 1 \mathrm{AH}, 00 \mathrm{H}, 05 \mathrm{H}$.

Expected output samples $=00 \mathrm{H}, 05 \mathrm{H}, 14 \mathrm{H}, 1 \mathrm{AH}, 26 \mathrm{H}, 5 \mathrm{BH}, 69 \mathrm{H}, 7 \mathrm{FH}$.

- Inputs samples = D4H, CCH, C1H, AFH, $92 \mathrm{H}, 54 \mathrm{H}, 16 \mathrm{H}, 01 \mathrm{H}$.

Expected output samples $=01 \mathrm{H}, 16 \mathrm{H}, 54 \mathrm{H}, 92 \mathrm{H}, \mathrm{AFH}, \mathrm{C} 1 \mathrm{H}, \mathrm{CCH}, \mathrm{D} 4 \mathrm{H}$.

