
8051 Timers

Dinesh K. Sharma

Electrical Engineering Department

I.I.T. Bombay

Mumbai 400 076

1 Timer/counters in 8051

The 8051 has two timers T0 and T1, which may be configured and used individ-
ually. The 8052 has an additional Timer T2.

All these counters count up on negative going edges at their inputs. These can
be used as event counters (where they count the number of negative transitions
on a pin connected to some external source), or as Timers, where they count up
once every twelfth clock cycle. A special use of timers is for generating baud rates
for the serial port.

The usage of these timers is somewhat different from common general pur-
pose timer/counters such as the 8253 and 8254. This difference stems partly from
the fact that we cannot afford to have a large numbers of pins dedicated to the
functioning of these timer counters. Thus, just two multifunction pins are used
as external inputs in 8051. Gating is accomplished by control bits in the special
function registers, and using the external interrupt pins as gate inputs. There are
no output pins associated with the timers. The processor can be interrupted by
the timers and as a part of the interrupt service routine, the processor can perform
any IO function through its ports. When used as baud rate generators, the output
goes directly to the serial port hardware within the microcomputer.

8051 timers always count up. Each counter has a 16 bit count register in the
SFR area. The low and high bytes can be accessed as separate bytes. When their
count rolls over from the maximum count to 0000, they set the corresponding
timer flag (TF1 or TF0) in TCON.

The 8051 can be set up so that an interrupt occurs whenever TF1 or TF0 is
set. When 8051 branches to the interrupt vector, it automatically clears the TF
flag.

1



1.1 Timer Functions

When used as timers, the 8051 timers count up every 12th clock cycle. This is
selected by clearing the corresponding C/T flags in the TMOD special function
register, placed at the address 89H.

1.2 External Event Counting

Port P3 of 8051 is a multi-function port. Different lines of this port carry out
functions which are additional to data input-output on the port.

Additional functions of Port 3 lines

Port Line P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

Function RD WR T1 in T0 in INT1 INT0 TxD RxD

Lines P3.5 and P3.4 can be used as inputs to Timers T1 and T0 respectively.
If the C/T flag of a timer is set, the corresponding line is sampled once every
machine cycle. The count is advanced when a negative step is noticed on the
line: this involves sampling a high level in one cycle and a low one on the next.
Since each machine cycle takes 12 clock cycles, the fastest event counting rate is
clock frequency/24.

2 Special Function Registers

The functioning of these timers is controlled through several special function reg-
isters.

TCON register at BYTE address 88H

Bit No. 7 6 5 4 3 2 1 0

Bit Name TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit Addr 8F 8E 8D 8C 8B 8A 89 88

TMOD register at BYTE address 89H

Bit No. 7 6 5 4 3 2 1 0

Timer: T1 T0

Bit Name G1 C/T1 T1M1 T1M0 G0 C/T0 T0M1 T0M0

• The TR0 and TR1 flags in the TCON register (at address 88H) enable a
timer to run, when set.

• The C/T flags in the TMOD register (at address 89H) decide whether event
counter operation (flag set) or timer operation (flag cleared) will be used.
(TMOD is not bit addressable).

2



• The Gate flags in TMOD decide whether counting will be gated by the
corresponding external interrupt pin in P3. If the Gate Flag is cleared, the
counter is enabled by the TR flag alone. If the Gate flag is set, counting also
requires the corresponding external interrupt pin in P3 to be HIGH. This is
useful for measuring pulse widths.

%12Osc

Timer

Input Pin Control

TR Flag

Gate
Flag

Int
Pin

To

Counter

Various control registers for timers are placed in the SFR area as shown below:

Reg. Name Address Function
TCON 88H Timer status
TMOD 89H Timer modes and Config
TL0 8AH T0 count register: Low
TL1 8BH T1 count register: Low
TH0 8CH T0 count register: High
TH1 8DH T1 count register: High

2.1 Timer modes

The timers may operate in one of four modes:

Mode 0 In this mode, the timers act as 13 bit counters. This mode is largely
meant for providing compatibility with an older microcontroller from intel
(8048). This mode is practically never used in fresh designs. Except for the
counter size, this mode is identical to mode 1.

Mode 1 In this mode, the timers are 16 bits in size. This is a commonly used
mode. It is common to configure the timer to cause an interrupt when it
overflows. The interrupt routine then reloads the timer.

Mode 2 This mode provides an 8 bit counter with auto-reload. It uses the high
byte of the count register to store the count value and the low byte as the
actual counter. The counter is automatically re-loaded from TH when it
overflows. Thus, there is no software overhead for re-loading the registers.
This is convenient for generating baud rates etc. The timing resolution is

3



much lower in this mode (only 8 bits). Therefore crystal frequencies have
to be carefully chosen to generate accurate baud rates. Crystals of 11.059
MHz are often used rather than 12 MHz for this reason.

Mode 3 In this mode Timers T0 and T1 behave quite differently. T0 acts as two
independent 8 bit counters. Count register TL0 uses the resources (such as
the RUN flag, overflow flag) in TCON, TMOD etc. meant for T0. Similarly,
TH0 uses the resources meant for T1. Thus, TR1 will enable running the 8
bit counter made up of TH0. TF1 will be set whenever TH0 overflows.

T1 now has no control bits at all! It can only be used for services which
require no control, no gating and no interrupts. Thus, T1 can be used for
Baud rate generation, while we still have two timers available (both with 8
bit resolution).

3 Enabling Timer Interrupts

SFR IE at byte address A8H contains flags which allow an interrupt to occur
whenever a timer overflows.

Bit No. 7 6 5 4 3 2 1 0

Bit Addr AF AE AD AC AB AA A9 A8

Bit Name EA - - ES ET1 EX1 ET0 EX0

Interrupt on IE U U SI TF1 Ex1 TF0 Ex0

The most significant bit of the register is a global interrupt enable flag. This bit
must be set in order to enable any interrupt. Bit 5 is used by 8052 for the third
timer available in 8052. Bit 3 should be set to enable interrupts from Timer 1
overflow. Bit 1 enables interrupts from Timer 0 when it overflows.

3.1 Interrupt Vectors for Timers

When an interrupt occurs, the updated PC is pushed on the stack and is loaded
with the vector address corresponding to the interrupt. The following table gives
the vector addresses. The order of entries in the table is also the order in which
the 8051 will poll these in case of multiple interrupts.

Interrupt Source Vector address

External Interrupt 0 0003H
Timer 0 Overflow 000BH

External Interrupt 1 0013H
Timer 1 Overflow 001BH
Serial Interface 0023H

4



8051 starts executing from address 0000H at power-up or reset. The first 3 bytes
are typically used for placing a long jump instruction to start of the code area.
The interrupt vectors start from 0003 and are separated by 8 bytes from each
other. Many simple interrupt handlers can be accommodated in this space. (For
example, re-loading of counts after timer overflow). Otherwise, jump instructions
(to handler locations) need to be placed at the vector addresses. This is quite
similar to the RST handlers for 8085.

Thus, to enable interrupts from T0, we have to do

SetB EA ;(or SetB IE.7) to enable interrupts
SetB ET0 ;(or SetB IE.1) to enable interrupts from T0

After this, whenever T0 overflows, TF0 will be set (in SFR TCON), the currently
running program will be interrupted, its PC value will be put on the stack (PC-L
first, PC-H after – because the stack grows upwards in 8051), and PC will be
loaded with 000B H. The interrupt handler for T0 should be placed here, and it
should end with the instruction:

RETI

4 Initializing Timer Counts

Timers count up and set their flags when they go from max. count to 0000.
Therefore, it is more convenient to think of the initial count as negative numbers.
Suppose we want the timer to time out after 10 mS and we are using a 12 MHz
crystal. Since the timer is incremented at fosc/12 = 1MHz, each count cycle is 1
µs in duration. So, we need a count time of 10,000 cycles. We should therefore
initialise the count to -10,000.
Since 10,000 = 39*256+16 = 2710H,
-10000 = 2’s complement of 2710 = D8F0.
Another way to think about it is that the overflow count is actually 10000H. So
we should subtract the required count from this and initialize the count to the
difference. Thus, the initial count in the above example should be:

10000

- 2710

------

= D8F0

------

Either way, we get the same result.

5



5 Reading Timer Counts

Since the current count is in two bytes, we have to read these sequentially. This
presents a problem - because by the time we go to read the second byte, the first
one may have changed. For example, suppose the count is 04FF. We do:

MOV R0, TL0
and get FF in R0. However, one machine cycle has passed, so the count reaches
0500. Therefore, if we do

MOV R1, TH0
we shall get 05 in R1. Thus we can be misled into thinking that the count is
actually 05FF. This problem had been tackled in 8253 and 8254 by the “Latch
Counter” commands. This command would copy the count to a latch while the
counter could continue operating. The latch could then be read safely. This com-
mand does not exist in an 8051. So how do we solve this problem?

One way is to read the high byte of the timer, then read the low byte, then
read the high byte again. If the high byte read the second time is not the same as
the high byte read the first time, one must repeat the cycle. In code, this would
appear as:
READT0:

MOV A,TH0
MOV R0,TL0
CJNE A,TH0,READT0

Another way is to freeze the counter by clearing its RUN bit, read its value
and then start it again by setting the RUN bit. Of course, you might miss a few
counts this way - but at least the timer value won’t be grossly wrong.

6 Use of gating

Gating is useful when we want an external source to start or stop the timer. If
the gate bit in TMOD is set, the timer would be enabled only if the corresponding
external interrupt pin is high. This can be used to measure pulse widths, by
appling the pulse to the external interrupt pin. This can be understood by the
circuit given earlier:

%12Osc

Timer

Input Pin Control

TR Flag

Gate
Flag

Int
Pin

To

Counter

6


