
Introduction to Microcontrollers

Introduction to Microcontrollers

Dinesh Sharma

Department Of Electrical Engineering
Indian Institute Of Technology, Bombay

Sept. 22, 2010



Introduction to Microcontrollers

Need For a programmable device

Design of complex integrated circuits has a high fixed cost

component.

If sold in large quantities, the cost of an integrated circuit

can be quite low.

It makes sense to design a programmable device which

would perform different functions in different products.

Now this device can be used for a variety of applications

and will thus be required in large quantities.

The function performed by the device will be selected by a

digital input. This is called an instruction.

The device is given a series of instructions to perform a

function. This specific sequence of instructions is a

program.



Introduction to Microcontrollers

The Processor

The programmable digital device which can run a program

is called a processor.

Processors can be large and complex. However, a

(relatively) simple processor which is implemented on a

single chip using VLSI technology is called a

microprocessor.

The term is applied these days even to complex processors

– a pentium has upwards of 100 million transistors!

The basic logic in a processor just performs the following
loop endlessly:

Fetch next instruction

Decode it
Execute the instruction



Introduction to Microcontrollers

Instruction Fetching

Each instruction is encoded as a unique combination of

digital bits.

We need a device to store all the instructions to be

executed.

This storage device is called a memory.

The memory device stores different instructions at different

locations.

Each location is also encoded as a combination of digitatl

bits. This is known as the address.

The way an instruction is fetched is that the processor

outputs an address and the memory returns the contents

stored at this address. These contents are interpreted as

the instruction.



Introduction to Microcontrollers

Fetch Next Instruction

How do we fetch the Next instruction?

The processor contains storage elements too. These are

called registers

One particular register contains the address of the

instruction to be executed.

This is called the Instruction Pointer.

Instruction pointer is automatically incremented every time

it is used.

Therefore, on next use, we shall fetch the next instruction,

not the same one.

For this reason, it also known as the Program Counter.



Introduction to Microcontrollers

Registers in the processor

Just like the instruction pointer, the processor may contain

other registers which are used for specific purposes.

In addition, it may have general purpose registers which

are used for storing data.

Registers which are specifically used to store addresses

are called pointers. For example, the Instruction pointer

and the stack pointer.

Registers whose contents can be manipulated through

instructions are placed in a register file and are often

identified by indices allotted to them.



Introduction to Microcontrollers

Instruction Decoding

The processor has different execution units – such as an

adder, a subtractor, a circuit to AND two quantities etc.

The decoder contains special digital circuitry which will

look for some predefined bit combinations.

Depending on which bit combination is found, a particular

execution unit is activated.

For example, if the top two bits are 0 and 1 respectively, an

8085 processor will interpret it as a MOV instructions,

which copies data from one register to another.

The remaining bits of the instruction are used to determine

which is the source register and which is the destination.



Introduction to Microcontrollers

The Execute operation

The decode operation activates a selected circuit on the

processor.

The data to be fed to this execution is knwon as

operand(s).

The operands may be the contents of data registers on the

processor chip or contents of some memory location.

If the operand is in the (external) memory, it needs to be

fetched first, just like the instruction.

After the operation has been performed, the result stored

in a register or in memory.

Again, if the destination of the result (as specified by the

instruction) is in memory, a memory write cycle has to be

carried out.



Introduction to Microcontrollers

Changing the program flow

A programme need not be confined to executing sequential

instruction.

An instruction can cause a new value to be loaded in the

Instruction pointer. As a result, when the next instruction is

fetched, it will be from this new address and not from the

auto-incremented value.

Modification of the instruction pointer can be made

conditional.

This way one can implement various “if” and “goto” kind of

constructs.

These can be combined by the program to construct loops

like “while” and “for”.

What if we want an external event, rather than the program, to

change the program flow?



Introduction to Microcontrollers

Interrupts

If we want an external event to modify the sequence of

operations being carried out under program control, We

have to enable this in hadware.

This is called “interrupting” the program.

When a signal arrives at an interrupt pin, and this facility is

currently enabled, the processor completes the currently

executing instruction, then suspends the regular program

flow.

It stores the address from where the next instruction would

have been fetched.

It now starts executing a different program, called the

interrupt service routine.

When the interrupt service routine gets over, execution of

the interrupted program re-starts from the saved value of

the instruction pointer.



Introduction to Microcontrollers

Von Neumann Architecture

Processing
Data Instruction

Processing

MemoryBottleneck!

State
Instructions

Data

Bus

Instructions A common bus is used for

data as well as instructions.

The system can become ‘bus

bound’.



Introduction to Microcontrollers

Harvard Architecture

Data Instructions

State

Instructions
Processing
Instruction

Instruction
MemoryMemory

Data

Processing
Data

Separate data and instruction

paths

Good performance

Needs 2 buses → expensive!

Traffic on the buses is not

balanced.

Instruction bus may remain

idle.



Introduction to Microcontrollers

Modified Harvard Architecture

State

Constants

Mux

Variables

Instructions

Processing Processing
InstructionData

Instructions

Data
Memory Memory

Read Only

Constants can be stored with

Instructions in ROM.

Better Bus balancing is

possible.

Typically, 1 instruction read, 1

constant read, 1 data read and

1 result write per instruction.

2 mem ops per bus.



Introduction to Microcontrollers

Modified Harvard with Cache

Processing
Data

State

Instructions

Mux Cache

Constants

Processing
Instruction

Memory
Read−Write
Memory

Read Only

Instructions

Cache allows optimum

utilization of bus bandwidths.

Each operation need not be

balanced individually.



Introduction to Microcontrollers

8051 Architecture

Most microprocessor systems use

a processor
ROM

RAM

Port I-O chips (like 8255A)
Counter/Timers (like 8253/8254)

Serial I/O

Microcontrollers like 8051 typically put all these functions

in the same chip.

The 8051 makes use of the fact that Harvard architecture

can be used internally without incurring the cost of an

additional external bus, Since ROM and RAM are inside

the chip.



Introduction to Microcontrollers

The 8051 family

Even though an 8051 uses internal ROM and RAM, an

external bus is desirable in order to add additional ROM,

RAM or peripheral chips.

Most microcontrollers are used in systems which serve a

fixed application: such as washing machines or cameras.

Resources not used by this particular application would

then be wasted.

Most microcontrollers are therefore produced as a family of

chips with different combinations of internal resources.

One picks the chip from the family which best matches

ones application.

The standard 8051 comes with 4K ROM, 128 bytes RAM,

4 8bit ports and 2 timer counters.

Other members of the family are the ROMless 8031, 8052

with 256 bytes of RAM and 3 counter/timers etc.



Introduction to Microcontrollers

8051 Compatible Chips

Since the 8051 family is widely used, other manufacturers

such as Atmel, Infinion, Philips and Western Digital have

introduced variants which provide additional utilities.

The Atmel 89C51 series replaces ROM by flash memory to

permit re-programming. This is extremely convenient

during development and for field upgradation.

Microcontrollers are quite inexpensive. Retail prices of

89C52 range between Rs. 60/ to Rs. 100/- in single IC

quantity.

All that is required is to add a crystal, a few capacitors and

a power supply to add microprocessor control to any

system.



Introduction to Microcontrollers

8051 Memory

Because of its Harvard

architecture, 8051 has

independent address spaces

for ROM and RAM.

The instruction encodes which

address space is being used.

For example, MOV uses

internal RAM, MOVC uses

ROM and MOVX uses

external RAM.

External and Internal ROM are

selected according to the

address and the level at the

EA pin.

EAEA =1

0000

FFFF FFFF

0FFF
0000

= 0

00

Internal RAM
Addressing

7F

AddressingIndirect
RAMInternal

00

FFFF

7F

Internal

Registers
Function
Special Memory

(8052 Only)

MemoryMemory

Direct

ROM addr.> 1000H
is always external

ROM addr <=0FFF
Internal if EA = 1
external if EA = 0

RAM

MOVC access ROM
external RAM

Most instructions access internal RAM.

ROM

FFFF

0000

External External

External

MOVX accesses
Instr. Fetch and



Introduction to Microcontrollers

internal RAM organization

Bit Addressable

Register Banks

(Active bank selected by bits in PSW)

30
28
20
18
10
08
00

90
98

SFR range accessed only by direct addressing

80
88

90

R0 R1 R2 R3 R4 R5 R6 R7
R0 R1 R2 R3 R4 R5 R6 R7
R0 R1 R2 R3 R4 R5 R6 R7
R0 R1 R2 R3 R4 R5 R6 R7

RAM8052
RegsSP Fn

F8 F8

indirect addressing.
8052 upper memory range accessed only by

88
80

F0



Introduction to Microcontrollers

Special Function Register Area

P0

P1

P2

P3

80
88
90
98
A0
A8
B0
B8
C0
C8
D0
D8
E0
E8
F0
F8

87

8F
97
9F
A7
AF
B7
BF
C7
CF
D7
DF
E7
EF
F7
FF

SP DPL DPH PCON
TCON TL0 TL1 TH0 TH1TMOD

SCON SBUF

IE

IP

ACC

PSW

B

0/8 2/A1/9 3/B 4/C 5/D 6/E 7/F



Introduction to Microcontrollers

Registers

If RAM is internal, there is very little difference between an

internal RAM location and a “register”. For notational

convenience, certain internal RAM addresses are referred to as

registers. Many instructions use these registers as operands

implicitly or explicitly. Following registers are located in the

“Special Function Register” area of the the internal RAM

(addresses > 7F).

The accumulator or A resides at address E0H. Register B

used implicitly by multiply and divide instructions resides at

address F0H.

The Program Status Word or PSW resides at address

D0H. It contains flags etc.

Pointer registers DPH and DPL reside at locations 83H

and 82H respectively. Taken together, these form a 16 bit

pointer register called DPTR. These operate like the HL

pair in an 8085.



Introduction to Microcontrollers

Stack and Stack pointer

Since the internal memory is limited to 128 bytes in an

8051 and to 256 bytes in 8052, internal memory pointers

are 8 bits in size.

The stack in 8051 family must reside in the internal

memory. The stack pointer is therefore an 8 bit register.

This is a special function register located at address 81H.

The stack grows upwards using pre-increment and post

decrement for the stack pointer.

Single bytes are pushed on the stack or popped from it.

Any directly addressed byte may be pushed or popped.

The stack pointer is initialized to 07 at power on.



Introduction to Microcontrollers

The Program Status Word

PSW is located at the address D0H in SFR memory area.

It contains flags etc. and is bit addressable.

CY AC F0 RS1 RS0 OV F1 P

Carry, Auxiliary Carry and Parity flags work like 8085 flags.

F0 and F1 can be used as flag variables.

RS1 and RS0 determine which Register Bank is active.

OV flag is set on overflow.

The overflow condition depends on the operation which

has been carried out.



Introduction to Microcontrollers

The Overflow flag

After addition/subtraction, the overflow flag is set if the

result has the wrong sign due to the operation. For

example, 60H and 70H are positive, but when added, will

give D0H, which would be interpreted as a negative

number because the most significant bit is set. This will set

the OV flag.

After multiplication, OV is set if the result is > 255. The

upper byte of product is placed in B.

After division, OV is set if divide by 0 is attempted.



Introduction to Microcontrollers

Register Banks

The lowest 32 bytes of internal RAM can also be referred

to as 4 banks of 8 registers each.

The registers are called R0 to R7. At a given time, only

one bank of registers is active.

Two bits in a special function register called Program

Status Word (PSW) decide which bank is active.

PSW is located at address D0H in the SFR area.

R0 refers to location 0 if bank 0 is active, to location 8 if

bank 1 is active and so on.

For example, if bank 2 is active, R6 refers to location

2 × 8 + 6 =16H.

This allows foreground and background processing to have

their own registers which reside in different banks.



Introduction to Microcontrollers

Bit Addressable Memory

8051 provides special instructions where the operands are

bits. Addresses used in these instructions are assumed to

be bit addresses.

Bit addresses form yet another address space.

16 bytes of internal RAM from address 20H to 2FH and

certain Special Function Registers are bit addressable.

Bit address 00 is the least significant bit of internal RAM

byte address 20, bit address 07 is the most significant bit

of the same bye, bit address 08 is the least significant bit of

internal byte address 21 and so on.

The 16 bytes from 20 to 2F take up bit addresses from 00

to 7F. Higher bit addresses are used for bits in special

function registers.



Introduction to Microcontrollers

Addressing modes

The 8051 provides the following addressing modes:

Immediate Constants must be specified with a # symbol. A

number without the # symbol is taken to be an

address.

Direct The address value is given directly as a number.

Most assemblers define shorthands for special

addresses. Register names ACC, B, SP, DPTR,

DPH and DPL are in fact shorthands defined by

the assembler. These are simply direct addresses.

Indirect Data objects may be referred to by pointers, which

are just variables containing addresses. Registers

R0 and R1 can be used as pointers for internal

RAM (which uses 8 bit addresses). 16 bit registers

PC and DPTR can be used as pointers for ROM or

external RAM.



Introduction to Microcontrollers

Addressing modes

Indexed Some instructions use the sum of two registers as

addresses. This is convenient for tables etc.

where the address will be the sum of the start

address of the table and a multiple of the index.

bit addressing Instructions operating on bits expect a bit

address. The bit address can be specified as a

direct address or in byte-addr.bit-No. format.

For example ACC.3 means bit 3 of the

accumulator. Of course, the byte should be bit

addressable.



Introduction to Microcontrollers

Notation

Constants Constants must carry a # symbol before them.

ADD A, #5 means add the constant 5 to A, while

ADD A, 5 means add the contents of location 5 in

internal RAM to A.

Pointers Operands specified by a pointer carry an @ signal

before them.

ADD A, @R0 means add to A the contents of the

memory location whose address is in R0 and put

the result in A.

Registers Registers which can be used as 8bit pointers (R0

and R1) will be referred to as Ri. Any register from

the set R0 to R7 will be represented as Rn.



Introduction to Microcontrollers

Interpreting address by context

Addresses specified as numbers will be interpreted as byte

addresses or bit addresses based on context.

MOV A, 5 : copy the contents of location 5 to A.

MOV C, 5 : copy the value of bit 5 of location 20H to carry.

The difference between the two is that the destination is a byte

in the first case and a bit in the second case. So the address

must be interpreted accordingly.

Bit addresses can also be specified in byte-addr.bit-No. format.

MOV C, ACC.5 means copy bit 5 of the accumulator (direct byte

address E0H) to the carry flag, (which is actually bit 7 of PSW.



Introduction to Microcontrollers

Data movement Instructions

MOV dst, src

Here dst can be A, Rn, a directly addressed byte or an

indirect reference @Ri. The source can be A, Rn, direct,

@Ri or #immediate. Both source and destination cannot

use an R register.

MOV DPTR, #data16

The 16 bit immediate data value is loaded in DPTR. This is

like LXI in 8085.

MOV C, bit-addr and MOV bit-addr, C

These instructions operate on single bits, copying the bit

from the given bit address to carry or from carry to the

given bit address.



Introduction to Microcontrollers

Moving Data to and from the stack

The stack resides in internal RAM. It grows upwards as the

stack pointer is pre-incremented to push and post decremented

to pop. Byte sized objects are pushed and popped in 8051.

push direct

The stack pointer is pre-incremented and the value at the

given direct addr. is copied to the addr. in stack ptr.

pop direct

The byte in internal RAM at the addr. given by SP is read.

The stack pointer is then decremented and the byte read

from the stack is written to the given addr.



Introduction to Microcontrollers

Pushing and popping the stack pointer

As a special case, consider when SP itself is popped from

stack. We want to transfer the value stored in the stack to SP.

But will it get modified due to post decrementing of the stack

pointer?

Assume SP contains 1A and the internal memory at addr. 1A

contains 56. POP SP will read the address pointed to by SP

(location 1A), find 56 there, decrement SP (to 19) and store the

read value 56 at the destination addr. given in the instruction

(which in this special case is SP itself).

So the decremented value 19 in SP will get overwritten by 56

and SP will have the value read from the stack, as desired.



Introduction to Microcontrollers

Exchanging Data

XCH A, src

Here src can be a direct address, Rn or @Ri. The src byte

then contains the value of A and A acquires the original

value of the source byte.

XCHD A, @Ri

This exchanges just the lower nibble of the two operands.

The upper nibble retains its original value.

Exchanging the upper nibble

The upper nibble may be exchanged by combining the

above instructions. If we do

XCH A, @Ri

XCHD A, @Ri

Both instructions exchange the lower nibble while the first

exchanges the upper nibble also. Thus the upper nibble is

exchanged once, while the lower nibble is restored to its

original value due to two exchanges.



Introduction to Microcontrollers

Swapping Nibbles

There is a special instruction to swap the upper and lower

nibbles in A. The instruction is:

SWAP A

Also, the accumulator can be cleared by the instruction

CLR A

and complemented by the instruction

CPL A



Introduction to Microcontrollers

Data movement from ROM

MOVC A, @A+DPTR

Move a constant from the ROM to A. The address to be

accessed in ROM is the sum of the 8 bit value in A and the

16 bit value in DPTR. This is convenient for table look up.

the start address of the table is put in DPTR and the offset

derived from the index is in A.

MOVC A, @A+PC

This is like MOVC A @A+DPTR, except that the 16 bit

pointer value is taken from (updated) PC instead of DPTR.

This is used when constants are at some fixed offset from

the current instruction. The offset is placed in A. Using this

instruction allows one to access the constant irrespective

of the absolute address at which the program is loaded.



Introduction to Microcontrollers

Moving Data to and from External RAM

Data movement to and from the external RAM always involves

A. The address in the External RAM is given as @DPTR or

@Ri.

MOVX A, @DPTR, MOVX @DPTR, A

The 16 bit address to be used for the external RAM is

taken to be the contents of DPTR.

MOVX A, @Ri, MOVX @Ri, A

The upper byte of the external address is latched using

port output commands. The lower byte of the external

RAM address is provided by Ri.



Introduction to Microcontrollers

Addition and Subtraction

ADD, ADDC and SUBB are available as instructions for

addition, addition with carry and subtraction with borrow.

Subtraction without borrow is not available.

Addition and subtraction is always performed with A as the

destination. The other operand can be a directly addressed

byte, Rn, @Ri or #immediate.

Carry, Auxiliary Carry, Sign and Parity bits are set as in the

case of 8085. The Overflow bit is set as the XOR of carry out of

bits 6 and 7. This indicates a sign reversal due to

addition/subtraction of legitimate positive or negative numbers.



Introduction to Microcontrollers

Incrementing, decrementing and decimal adjust

The instructions INC and DEC add 1 to or subtract 1 from their

operands. The operand can be A, a directly addressed byte, Rn

or @Ri. No flags are affected.

A 16 bit increment is carried out by the instruction INC DPTR.

Notice that there is no decrement for DPTR

The instruction DA carries out a decimal adjust after an

addition. This involves adding 6 to either or both nibbles of A if

there is a carry from them during addition or if their value is >9.

The flags C and AC reside in the two most significant bits of

PSW.



Introduction to Microcontrollers

Multiplication and Division

8051 provides instructions for unsigned multiplication and

division of 8 bit operands.

The multiply instruction (MUL AB) multiplies the contents of

registers A and B. The MSB of the product is placed in B and

the less significant byte is placed in A. The Overflow flag is set

if the result is > 255.

The divide instruction (DIV AB) divides A by B and places the

quotient in A and the remainder in B.

The overflow flag will be set if a divide by 0 is attempted. Else,

the overflow flag is cleared.



Introduction to Microcontrollers

Logical Instructions

We can perform bitwise AND, OR and XOR operations using

ANL, ORL and XRL instructions.

These instruction take a destination and a source operand. The

destination operand can be A or a directly addressed byte.

If A is the destination, the source operand can be a directly

addressed byte, Rn, @Ri or # immediate.

If a direct address is the destination, the source operand can be

A or # immediate. For example:
ANL A, R5 ; AND A with R5 and put the result in A.

ORL 87H, #80H ; OR the contents o addr 87H with 80H,

; store result in 87H.

Logical instructions do not set flags. If the destination is a port,

The latch (and not the pin) values are used for evaluation.



Introduction to Microcontrollers

Rotate Instructions

Rotate instructions operate on A.

We can rotate towards left or right, with or without carry.

RL A ; Rotate A left

7 6 5 4 3 2 1 0

RR A ; Rotate A right

7 6 5 4 3 2 1 0

RLC A ; Rotate A left with Cy

7 6 5 4 3 2 1 0Cy

RRC A ; Rotate A rt with Cy

7 6 5 4 3 2 1 0 Cy

Unlike 8085, flags are not affected by RL or RR and only the

carry flag is affected by RLC and RRC.



Introduction to Microcontrollers

Swap, clear and complement

All these instructions operate on A.

SWAP A swaps the upper and lower nibbles of A. It is

equivalent to 4 shifts without carry in left or right direction.

CLR A makes clears all bits of A.

CPL A complements all bits of A.

Notice that CLR and CPL can also operate on bit sized

operands such as carry or a bit address.



Introduction to Microcontrollers

Bit oriented instructions

We copy a bit from a bit address to carry, or from carry to a bit

address. We can also clear, set or complement the carry or the

content of a bit address.

We can also perform AND or OR operation on bits

MOV C,bit ;C = bit MOV bit,C ;bit = C

CLR bit ;make bit=0 CLR C ;make C=0

SETB bit ;make bit=1 SETB C ;make C=1

CPL bit ;bit = bit CPL C ;C=C

ANL C,bit ;C = C AND bit ANL C,/bit ;C=V AND bit

ORL C,bit ;C = C OR bit ORL C,/bit ;C=V OR bit



Introduction to Microcontrollers

Jump, Call and Return

Jump instructions modify the program counter such that the

next instruction to be executed is from some specified program

address.

Call instructions do the same, but they save the updated value

of PC on the stack, (lower byte first) before overwriting it with

the destination address.

RET pops the return address from the stack (higer order byte

first) and copies it to PC.

8051 has various jump and call instructions which differ from

each other in how the destination address is specified.



Introduction to Microcontrollers

LJMP and LCALL instructions

In these jump and call instructions, the destination address is

given as a 16 bit direct address.

The assembler syntax is

LJMP Label

LCALL Label

The 16 bit absolute address corresponding to the Label is

placed in the instruction.

LJMP is encoded as 02H Addr(High) Addr(Low), while LCALL

is encoded as 12H Addr(High)Addr(Low).



Introduction to Microcontrollers

AJMP and ACALL instructions

LCALL and LJMP encode the full 16 bit destination address.

Therfore, these are 3 byte instructions

If the destination address is within the same 2KB address

space as the updated PC, shorter jump/call instruction can be

used.

If the destination address is in the same 2K address space as

the updated PC, it has the same 5 most significant bits as the

PC.

Then we need not specify these and can come up with 2 byte

instructions for jump/call.

These are the 2 byte AJMP and ACALL instructions.



Introduction to Microcontrollers

AJMP and ACALL instructions

The assembler syntax for AJMP and ACALL is

AJMP Label

ACALL Label

Only 11 least significant bits of the destination label are

included in the instruction. The instruction is encoded as

AJMP : A10 A9 A8 0 0 0 0 1 A7 A6 A5 A4 A3 A2 A1 A0

ACALL: A10 A9 A8 1 0 0 0 1 A7 A6 A5 A4 A3 A2 A1 A0

Only A10 to A0 are copied to PC, so the 5 most significant bits

of the PC remain unchanged.

Therefore control can only be transferred between statements

which lie in the same 2K page of program memory.



Introduction to Microcontrollers

SJMP instruction

In this variant, the destination is provided as an 8 bit signed

offset from the updated PC. The assembler syntax is

SJMP Label

The assembler actually calculates the offset of the label from

the the instruction following SJMP, and encodes it in the

instruction as an 8 bit signed number.

There is no corresponding CALL instruction.

This instruction can be used only if the target label is within

+127 to -128 locations from the next instrucion.

It is encoded as: 80H, offset.



Introduction to Microcontrollers

JMP @A+DPTR

This statement calculates the 16 bit sum of DPTR with A and

jumps to this address. This is useful for managing jump tables.

Suppose we have an array of AJMP statements, of the type

AJMP Label-i, each occupying 2 bytes.

If we want to execute the i’th AJMP statement, we can load the

start address in DPTR and 2*i (offset) in A.

Now jmp @A+DPTR will jump to the i’th statement,

which will in turn, take us to Label-i.



Introduction to Microcontrollers

Conditional jumps

Conditional jumps are like SJMP. These specify the target

address as an 8bit signed offset from the updated PC.

JB bit-addr, Label jump to Label if the addressed bit is set.

JNB bit-addr, Label jump to Label if the addressed bit is cleared.

JBC bit-addr, Label jump if bit set, clear the bit.

JC Label jump to Label if carry set.

JNC Label jump to Label if carry cleared.

JZ Label jump to Label if A = 0.

JNZ Label jump to Label if A is non zero.

Notice that there is no Z flag in 8051.

JZ and JNZ examine the accumulator contents to decide

whether to jump.



Introduction to Microcontrollers

Looping constructs

There are two conditional jumps which are particularly useful

for looping.

DJNZ counter, Label;

decrements the counter and jumps to the given label if it is not

zero. The counter could be Rn or a directly addressed byte.

This is obviously useful for counted loops.

CJNE arg1, arg2, Label;

arg1 and arg2 are compared and the jump is taken if these are

not equal. This is useful for loops which last till the loop variable

attains a given value.

If arg2 is an immediate value, arg1 can be A, Rn or @Ri.

In addition to this, A can be compared to a directly addressed

byte. The carry flag is set if arg2 > arg1.



Introduction to Microcontrollers

Miscellaneous Instructions

In addition to the instructions discussed upto now, the 8051 has

the following instructions:
NOP Do nothing

RETI Return from Interrupt

RETI works just like RET, accept that it also restores interrupt

enable values to their original settings.

(Interrupts may be automatically disabled based on their priority

levels while an interrupt handler runs. These need to be

re-enabled when the handler terminates.)



Introduction to Microcontrollers

Read Modify Write Operations

Read Modify Write operations include logic operations ANL,

ORL and XRL because the destination (either A or a directly

addressed byte) is also one of the source operands.

Increment and decrement operations INC and DEC, DJNZ

(because it uses decrement) and complement bit instruction

CPL also belong to this class. The conditional jump JBC is also

a read-modify-write operation.

Less obviously, instructions which just write to a single bit are

also read-modify-write operations.

Thus, CLR Px.y, SETB Px.y and MOV Px.y, C

read Px, use masking and write back Px to write a single bit

without affecting others.

When Read Modify Write operations are carried out on a port,

the latch and not the pin values are read.


